Green roofs to mitigate the Urban Heat Island

Abrange Mavimbele, Emma Nel, Zachary Njuguna Advisor: Dr Adewunmi Gideon Fareo

MISGSA Graduate Modelling Camp 2021

30 January 2021

[Green roofs to mitigate the Urban Heat Island](#page-11-0) 30 January 2021 1 / 12

Outline

- [What are green roofs?](#page-3-0)
- [Break-up of the problem](#page-4-0)
- [Simplifying some terms](#page-7-0)
- [Problem statement](#page-9-0)

D F

- ← 冊 →

What is the Urban Heat Island?

The Urban Heat Island is a phenomenon where the temperature of urban areas and a region of a city (generally the inner city) is higher than the surrounding less dense outskirts. This phenomenon is mostly observed in the late afternoons.

What are green roofs?

A green roof or living roof is a roof of a building that is partially or completely covered with vegetation.

 Ω

Break-up of the problem

в

э

4 ロ ▶ 4 母 ▶ 4

 299

Break-up of the problem

We consider the heat equation for the temperature of the soil of a green roof at depth x and time t :

$$
\rho c \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} \tag{1}
$$

subject to three boundary conditions:

- The temperature at time $t = 0$ at any point x is equal to T_{ave} : $T(0, x) = T_{\text{avg}}$
- The temperature at position $x \to \infty$ will be equal to T_{avg} : $T(t, x \to \infty) = T_{\text{avg}}$
- The temperature at position $x = 0$ is dependent on the heat flux into the soil at $x = 0$

 Ω

イロト イ押ト イヨト イヨト

Break-up of the problem

In order to describe our last boundary condition, we will need to calculate the net heat flux on the green roof.

The components of the heat flux we will consider:

- Solar heat flux from shortwave radiation: $Q_s \gamma Q_s$
	- \triangleright Q_s = Irradiance recieved by surface
	- $\blacktriangleright \ \gamma = \text{albedo}, \ 0 < \gamma < 1$
- Heat flux due to black body radiation: $\epsilon \sigma (T^4 T^4_a)$
	- $\bullet \sigma =$ Stefan-Boltzmann constant
	- ϵ = emmisivity
	- \blacktriangleright \top = soil temperature
	- \blacktriangleright T_a = ambient air temperature
- Heat flux by evapotranspiration: $L_v d\rho_w$
	- \blacktriangleright L_v = latent heat of vaporisation of water
	- \bullet \dot{d} = evapotranspiration rate
	- ρ_w = water density
- Heat flux transfer by convection:
	- $h =$ convective heat transfer coefficient

イロト イ押ト イヨト イヨト

 \equiv \cap α

Simplifying some terms

We simplify the contribution to the net flux from the black body radiation by expanding the term as a series around T_a .

$$
f(T) = f(T_a) + (T - T_a) \frac{\partial f}{\partial T} + (T - T_a)^2 \frac{\partial^2 f}{\partial T^2} + \dots
$$

Since the terms of $T - T_a$ with orders higher than 1 is sufficiently small, it can be discarded. Furthermore, $f(T_a) = 0$. This gives:

$$
f(T) \approx (T - T_a) \frac{\partial f}{\partial T} = (T - T_a)(4T_a^3)
$$

Combining all the contributions to the heat flux, including the simplified contribution from the black body radiation, we find the net heat flux:

$$
Q_{net} = Q_s - \gamma Q_s - \epsilon \sigma (T - T_a)(4T_a^3) - h(T - T_a) - L_v d\rho_w \qquad (2)
$$

We also have the general equation for heat flux into a surface:

$$
Q_{net} = -k \frac{\partial T}{\partial x}(t,0)
$$
 (3)

Problem Statement

Solve:

$$
\rho c \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} \tag{4}
$$

given:

$$
\mathcal{T}(0,x) = \mathcal{T}_{\text{avg}} \tag{5}
$$

$$
T(t, x \to \infty) = T_{avg}
$$
 (6)

$$
-k\frac{\partial T}{\partial x}(t,0)=Q_s-\gamma Q_s-\epsilon\sigma(T-T_a)(4T_a^3)-h(T-T_a)-L_v\dot{d}\rho_w
$$
 (7)

重

 2990

イロト イ部 トイヨ トイヨト

Non-dimensionalization

In order to simpify our problem we apply the following non-dimensionalization:

$$
\bar{x} = \frac{x}{L}
$$

$$
\bar{t} = \frac{t}{\tau}
$$

$$
\bar{T} = \frac{T - T_{avg}}{\Delta T}
$$

 ΔT , L and τ the scales to be determined.

(□) (_□) (

Non-dimensionalization

After the non-dimensionalization, our problem statement now reads: Solve:

$$
\frac{\partial \bar{T}}{\partial \bar{t}} = \frac{\partial^2 \bar{T}}{\partial \bar{x}^2} \tag{8}
$$

given:

$$
\bar{\mathcal{T}}(0,\bar{x})=0 \tag{9}
$$

$$
\bar{\mathcal{T}}(\bar{t}, \bar{x} \to \infty) = 0 \tag{10}
$$

$$
insert - equation \tag{11}
$$

4 ロ ト 4 何 ト

э